Tuning the oriented deposition of gold nanorods on patterned substrates.

نویسندگان

  • Waqqar Ahmed
  • Christian Glass
  • E Stefan Kooij
  • Jan M van Ruitenbeek
چکیده

The controlled patterning of anisotropic gold nanoparticles is of crucial importance for many applications related to their optical properties. In this paper, we report that gold nanorods prepared by a seed-mediated synthesis protocol (without any further functionalization) can be selectively deposited on hydrophilic parts of hydrophobic-hydrophilic contrast patterned substrates. We have seen that, when nanorods with lengths much smaller than the width of the hydrophilic stripe are used, they disperse on these stripes with random orientation and tunable uniform particle separation. However, for nanorods having lengths comparable to the width of the hydrophilic stripes, confinement-induced alignment occurs. We observe that different interactions governing the assembly forces can be modulated by controlling the concentration of assembling nanorods and the width of the hydrophilic stripes, leading to markedly different degrees of alignment. Our strategy can be replicated for other anisotropic nanoparticles to produce well-controlled patterning of these nanoentities on surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SERS substrates formed by gold nanorods deposited on colloidal silica films

We describe a new approach to the fabrication of surface-enhanced Raman scattering (SERS) substrates using gold nanorod (GNR) nanopowders to prepare concentrated GNR sols, followed by their deposition on an opal-like photonic crystal (OPC) film formed on a silicon wafer. For comparative experiments, we also prepared GNR assemblies on plain silicon wafers. GNR-OPC substrates combine the increase...

متن کامل

Fabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores

A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA). The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with c...

متن کامل

Patterned crystallisation on self-assembled monolayers with integrated regions of disorder†

This paper describes the engineering of patterned calcite films using templating by self-assembled monolayers (SAMs) supported on micropatterned mixed metal substrates. The substrates were prepared by deposition of one metal (Au, Ag) onto the surface of another metal (Au, Ag) through a stencil or photoresist masks. The micropatterning arises from the generation of disordered regions in SAMs at ...

متن کامل

Temperature measurement in a single patterned gold nanorod cluster using laser-induced fluorescence

The ability of photon to thermal conversion on wet chemically synthesized gold nanorods (GNRs) is a unique advantage to explore specific local heating. In this study, we demonstrate the thermal response of a single patterned GNR cluster in aqueous solution under near infrared irradiation. To improve the properties of GNRs, such as solubility, we describe the initiated chemical vapor deposition ...

متن کامل

In situ controlled sputtering deposition of gold nanoparticles on MnO2 nanorods as surface-enhanced Raman scattering substrates for molecular detection.

Single-crystal tetragonal α-MnO2 nanorods with different amounts of gold nanoparticles (NPs) attached were successfully prepared by a facile sputtering deposition technique. Initially, the morphology and crystal structure of the bare α-MnO2 nanorods synthesized via a hydrothermal approach were investigated. Then, the amount of gold NPs at different sputtering times was analyzed. It was confirme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2014